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Abstract Breast cancer is one of the most common types of cancer worldwide. Early detection of

cancer increases the probability of recovery. This work has three contributions. The first contribu-

tion is improving the performance of support vector machine (SVM) using a recent grey wolf opti-

mizer (GWO) for diagnosis breast cancer with efficient scaling techniques. The second contribution

is proposing three efficient scaling techniques against the classical normalization technique. The last

contribution is using a parallel technique which applies task distribution to improve the efficiency of

GWO. The proposed sequential model is applied on two different datasets, Wisconsin diagnosis

breast cancer (WDBC) dataset and Electronic Health Records (EHR). Experimental results of

WDBC show that the proposed hybrid GWO-SVM model achieves 98.60% with normalization

scaling. Also, using the proposed scaling techniques with the proposed GWO-SVM model gives

a fast convergence and achieves accuracy rate by 99.30%. The parallel version of the proposed

model achieves a speedup by 3.9 on four CPU cores. On the other hand, Experimental results of

EHR show that the proposed hybrid GWO-SVM model achieves 93.26% with normalization scal-

ing against 82.05 for SVM.
� 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Breast cancer is the most common cancer of 11.6% among

males and females of all ages. It is the most spreading in
women worldwide, accounting 24.2% of the whole cases diag-
nosed in 2018 [1].

Enhancing the accuracy of detecting the breast cancer dis-

ease is very important task, and early and accurate detection
s, Alex-
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can save many lives. Defects in breast cancer diagnosis by
experts can be avoided by expert systems and artificial intelli-
gence techniques. These expert systems can examine the med-

ical data in a short time and help junior physicians. Many
artificial intelligence techniques were used to detect this type
of cancers with high accuracies. C4.5 decision tree algorithm

with accuracy 94.74% [2]. RIAC method achieved 94.99%
accuracy with ten folds cross validation [3]. Linear discrimi-
nant analysis (LDA) method with 96.8% accuracy [4]. A diag-

noses model with support vector machine (SVM), and the
reported accuracy was 97.2% [5]. Neuro-fuzzy technique, the
reported accuracy was 95.06% [6]. Performance of 97.36%
was achieved by using fuzzy-GA method [7]. Three different

methods, AIRS, big LVQ and optimized LVQ are proposed
with 97.2%, 96.8% and 96.7% accuracies respectively [8].
The application of supervised fuzzy clustering method achiev-

ing performance 95.57% [9]. Accuracy 98.85% was obtained
with the mixture expert’s network structure for breast cancer
detection [10]. A fuzzy-AIS and KNN (Fuzzy-AIS-KNN) are

presented, with accuracy 99.14% [11]. A MLP-NN, four mod-
els, combined ANN, PNN, RNN with highest classification
accuracy of 97.36% was achieved by SVM [12].

LS-SVM was used with 98.53% accuracy [13]. SVM-
hybridized with F-score method was used with 99.51% accu-
racy [14]. Accuracy of 99.08% by ANFIS model for breast
cancer [15]. The hybrid method integrating association rules

and ANNs was introduced by with 97.4% accuracy [16]. SBS
algorithm integrating with BPNN and LM, BPNN and PSO
achieved 98.83%, 97.51% classification accuracy, respectively

[17]. The Artificial Meta-plasticity MLP (AMMLP) algorithm
was introduced with 99.26% accuracy [18]. RS-SVM classifier
for breast cancer diagnosis with classification accuracy of

100% and 96.87% for the highest and the average respectively
[19]. PSO-SVM with accuracy 99.3% [20]. An approach using
GA-based on feature selection, and achieved 96.9% accuracy

[21]. A comparison among six ML techniques: GRU-SVM,
LR, MLP, KNN, Soft-max Regression, and SVM achieved
99.04% [22]. Accuracy of 98.24% using genetic programming
and machine learning algorithms [23].

The scaling techniques can improve the classification accu-
racy and convergence speed. Ten efficient scaling techniques
were proposed for optimizing SVM [24]. Shen et al. [25] stud-

ied the Support Vector Machine (SVM) algorithm with the
Fruit-fly Optimization Algorithm (FOA) in various medical
datasets such as Wisconsin breast cancer dataset, Pima Indians

diabetes dataset, Parkinson’s dataset, and thyroid disease diag-
nosis, got from UCI repository. The ML SVM technique is
hybridized with Particle Swarm Optimization Algorithm based
SVM (PSO-SVM), Genetic Algorithm-based SVM (GA-

SVM), Bacterial Forging Optimization-based SVM (BFO-
SVM), and Grid Search Technique-based SVM (Grid-SVM),
and implemented with tools like MATLAB and LibSVM.

10-fold cross-validation technique was used. The SVM-FOA
gives the highest accuracy as 96.9%, 77.46%, 77.46%, and
96.38% in Wisconsin dataset, Pima dataset, Parkinson dataset,

and thyroid dataset respectively. A. Darwish et al. [26] presents
a two-step system that first uses four different swarm algo-
rithms namely; whale optimization algorithm (WOA), grey

wolf optimizer (GWO), flower pollination algorithm (FPA),
and moth flame optimization (MFO) for feature selection pur-
pose. Then, several classifiers are applied including support
vector machines, k-nearest neighbor, and decision tree. The
experimental using WDBC and WPBC datasets outcomes pos-
itively that the proposed system was effective in undertaking
breast cancer data classification and features selection tasks

by accuracy 98.77% and 84.34% respectively. S. Kamel et al.
[27] used data mining as a combination of feature selection
method by Gray Wolf Optimization (GWO) and support vec-

tor machine (SVM), WDBC dataset were applied to evaluate
the proposed method and assess the validity of the results in
MATLAB. Application of the proposed method increased

the improvement of the evaluated criteria, which increased
the accuracy of diagnosis by 27.68%, compared to former
works in the field. Kumar and Singh [28] proposed enhanced
grey wolf optimization-support vector machine approach

(EGWO-SVM) for breast cancer diagnosis. Their approach
achieved 98.24% accuracy rate for Wisconsin Diagnostic
Breast Cancer (WDBC) database. A. Rahmani et al. [29] pre-

sented a new method for minimizing the process of breast can-
cer diagnosis through the Grasshopper optimization algorithm
to reduce the features then select the optimal features and

improve the parameters using the SVM Classifier. The experi-
ments in this study were performed on three datasets, namely
WBC, WDBC and WPBC by accuracy 99.51, 98.83 and 91.38

respectively. Grey wolf optimizer (GWO) is one of the recently
proposed swarm intelligence-based algorithms, which is devel-
oped by Mirjalili et al. [30] in 2014 GWO has been widely tai-
lored for a wide variety of optimization problems due to its

impressive characteristics over other swarm intelligence meth-
ods: it has very few parameters, and no derivation information
is required in the initial search.. Faris et al. [31] proposed a

review of recent variants and applications using GWO. They
introduced several research publications using GWO have
been overviewed and summarized. Al-Betar et al. [32] pro-

posed six versions of GWO which are Greedy-based GWO
(GGWO), Proportional-based GWO (PGWO), Tournament-
based GWO (TGWO), Universal sampling-based GWO

(UGWO), Linear rank-based GWO (LGWO), Random-
based GWO (RGWO). The six versions are evaluated using
23 test functions circulated in the literature with different char-
acteristics and complexity.

These scaling techniques are efficient for linear program-
ming approach [33–43]. The scaling techniques that they
applied with SVM on WDBC dataset are arithmetic mean,

de Buchet for three cases (p = 1, 200 and infinity‘‘), de Buchet
(p=”infinity”), equilibration, geometric mean, IBM MPSX,
Lp-norm for three cases (p = 1, 200 and infinity”).

In [44] a parallel swarm technique applied for two-sided
balancing problem was introduced. The parallel method was
implemented to datasets for Massive passing which was intro-
duced in [45]. In [46] parallel dynamic programming algo-

rithms were introduced and discussed. A survey of many
methods for algorithms’ parallelization was discussed in [47].
In [48] parallel approach for constraint solving methods is

introduced. Three techniques for enhancing the classical meth-
ods were introduced [49]. First technique is neighborhood
search for reducing the solution space is used. Second tech-

nique is reducing calculations time by reducing the solutions
space. The last technique is integrating of the two mentioned
methods.

Optimizing SVM and extreme learning machine using
swarm intelligence algorithms such as PSO, ABC, FPA, BA,
and MFO, improve the performance of classical SVM model
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Fig. 1 Linear and nonlinear SVM.
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and overcome the local minima and overfitting problems easily
[50–55].

In this paper, the performance of SVM was improved using

GWO algorithm for efficient detection of breast cancer.
We used GWO algorithm because it has few number of

parameters, it is simple to understand and implement as also

as it results high classification accuracy, scalable, and it pro-
vides faster convergence by maintaining the right balance
between the exploration and exploitation during the search.

In addition to applying the parallel technique to accelerate
the performance of GWO, the proposed sequential model
was applied to WDBC breast cancer dataset that available
from the Wisconsin from UCI with a total 569 instances and

33 attributes.
In this paper, three contributions are proposed. The first

contribution is improving the performance of support vector

machine (SVM) using a recent grey wolf optimizer (GWO)
for diagnosis breast cancer. The second contribution is propos-
ing three efficient scaling techniques against the classical nor-

malization technique. The last contribution is using a parallel
technique which applies task distribution to improve the effi-
ciency of GWO. The proposed sequential model is applied

on two different datasets, Wisconsin diagnosis breast cancer
(WDBC) dataset and Electronic Health Records (EHR).
Experimental results of WDBC show that the proposed hybrid
GWO-SVM model achieves 98.60% with normalization scal-

ing. Also, using the proposed scaling techniques with the pro-
posed GWO-SVMmodel gives a fast convergence and achieves
accuracy rate by 99.30%. The parallel version of the proposed

model achieves a speedup by 3.9 on four CPU cores. On the
other hand, Experimental results of EHR show that the pro-
posed hybrid GWO-SVM model achieves 93.26% with nor-

malization scaling against 82.05 for SVM.
The rest of this paper is organized as follows. The algo-

rithms that are used in the study: SVM, GWO are described

in Section 2. The proposed sequential and parallel hybrid mod-
els are introduced in Section 3. In Section 4, a detailed descrip-
tion of the new scaling techniques, equilibration, arithmetic
mean and geometric mean are presented. In Section 5, Exper-

imental Design is introduced. In Section 6, Experimental
results and discussions are presented. Finally, conclusions
and future works are introduced in Section 7.

2. Preliminaries

In this section, Support vector machine (SVM), and grew wolf

optimizer (GWO) are presented and discussed.

2.1. Support vector machine (SVM)

Support vector machine (SVM), was introduced by Vapnik
[56,57]. SVM is based on the Vapnik-Chervonenkis (VC) the-
ory and structural risk minimization (SRM) principle. The

goal of SVM is the specifying of a hyperplane in an N-
dimensional space which can easily classify the available data
vectors. SVM uses convex quadratic programming, which
avoid local minima [58].

If we have a binary classification problem: having training
dataset with class label: ðx1; y1Þ; :::; ðxn; ynÞ; xi 2 Rd and
yi 2 ð�1;þ1Þ; where xi is an input or features vector and yi
the label of the class. The optimal hyperplane is:

wxT þ b ¼ 0 ð1Þ
where w; x; and b are the weight, the input vector, the bias
respectively. w And b satisfy:

wxT
i þ b � þ1 ifyi ¼ 1 ð2Þ

wxT
i þ b � �1 ifyi ¼ �1 ð3Þ

where yiis the class of each input vector

SVM model training objective is to specify w and b which

maximizes the margin 1

kwk2.

Usually the problem is non-linearly separable. To convert
the non– linear to linear, the input space is mapped into higher
dimensional space. SVM uses kernels to model higher dimen-
sional, non-linear models [59]. Kernel functions could be used

to increase dimensions to the data and make it a linear prob-
lem. Linear and non-linear are shown in Fig. 1. On the other
hand, the kernel functions could help in accelerating the calcu-

lations in high dimensional space. Such as, the linear kernel
like the dot product of two features in extended feature space.
RBF and polynomial kernels are the most common SVM ker-

nels, which are respectively defined as:

K xi; xj

� � ¼ e�ckxi�xjk2 ð4Þ

K xi; xj

� � ¼ ð1þ xT
i xjÞp ð5Þ

where kxi � xjk2is recognized as the squared Euclidean dis-

tance and c is the predefined parameter controlling the width
of the Gaussian kernel and p is the polynomial order. It has
been proved that proper model parameters setting can improve

the SVM classification accuracy.
SVM parameters tuning is very sensitive part. SVM param-

eters as follows: (1) C parameter, which make the balance

between the cost minimizing and model complexity; (2) gamma
parameter which determines mapping from nonlinear to linear
by raising the dimension; (3) the SVM kernel function, which

responsible for building a non-linear decision hyperplane [60].

2.2. Grey wolf optimizer (GWO)

Grey Wolf Optimization (GWO) algorithm is a recent meta-

heuristic algorithm [30]. GWO was proposed by Mirjalili
et al. in 2014, which has a fast convergence to global optimum.
GWO imitates the grey wolf’s hunting mechanism. The grey
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wolf population has four grades: a, b, d, and x. to mathemat-
ically model the grey wolves, suppose the best solution as al-
pha, and the second and third best solutions are beta and

delta, respectively. The rest are named omega. The social hier-
archy of GWs is shown in Fig. 2. GWs embracing prey during
hunting. The embracing behavior of GWOs are defined as

follow:

Dist ¼ jCg � XpðtÞ � XðtÞj ð6Þ

Xðtþ 1Þ ¼ XpðtÞ � A�Dist ð7Þ
where Dist the distance between the GW and the prey, t is the
iteration number. Xp Is the prey position. X is the GW posi-

tion vector. The vectors A and Cg are calculated as follows:

A ¼ 2ar1 � a ð8Þ

Cg ¼ 2r2 ð9Þ
where a is a vector where its values are linearly decreased from
2 to 0 during the course of run and among them r1 and r2 are
both random vectors in the interval of [0, 1].

The GWO optimization is to score the prey location by a, b
and d wolves. Rest of wolves use the location as a reference
and update their locations around the prey randomly. a, b,
and d wolves as shown in Fig. 2. GWs position updating is
shown in Eqs. (10)–(16)

Da ¼ jC1 � XaðtÞ � XðtÞj ð10Þ

Db ¼ jC2 � XbðtÞ � XðtÞj ð11Þ

Dd ¼ jC3 � XdðtÞ � XðtÞj ð12Þ

X1 ¼ XaðtÞ � A1 �Da ð13Þ

X2 ¼ XbðtÞ � A2 �Db ð14Þ

X3 ¼ Xd tð Þ � A3 �Dd ð15Þ

Xðtþ 1Þ ¼ ðX1 þ X2 þ X3Þ ð16Þ
The main objective of this research is to determine the opti-

mal parameters of SVM by using GWO algorithm to classify
the breast cancer data with high accuracy.
3. The proposed GWO-SVM classification model

3.1. The proposed sequential hybrid GWO-SVM model

GWO-SVM classification model for breast cancer diagnosis
is proposed. The proposed classification model has two

phases. In the first phase, SVM parameters are automatically
adapted by GWO algorithm. In the second phase, the opti-
mized SVM model performs the classification tasks. Ten-fold

CV was applied to guarantee the optimal results and best
accuracy.

GWO algorithm takes into consideration root mean
square error (RMSE) as the fitness function was used to

evaluate the best parameters of SVM. RMSE is defined as
follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

Predictedi � Actuali

N

vuuut
ð17Þ

where N represent no. of observations in test dataset.
In GWO-SVM model for breast cancer, it initialize the

number of population size with n which each grey wolf rep-
resent Xiði ¼ 1; 2; � � � :; nÞ; maximum number of iterations

with Max iter, number of features with dim which grey wolf
search in it for prey, upper bound with ub, lower bound
with lb, which are the boundary of positions, parameter a

that linearly degrading from (2 to 0) over the iterations, A
and Cg that are depend on a parameter value, Xa;Xb;Xdare

the positions of alpha, beta and delta wolves respectively
where all wolves update their positions according the posi-
tion of these three wolves and number of folds with k for

cross validation then it generate the initial population
(n� dim) with random values and load the data and apply
one of scaling techniques or normalization technique on it.

In order to guarantee the effectiveness of the model then
it apply k-folds cross validation and it do the following
for each fold.

The model check if the number of iteration, does not reach
toMax iter, it pass each agent to specific two functions and set
its output to parameters of SVM (C andc) and train SVM and
classify test set then it calculate the fitness function (RMSE)

from Eq. (17) and updateXa;Xb;Xd, where the least fitness is

alpha value.
The model update the parameter a and for all dimensions in

all agents, update A, Cg and the position of current agent
according toXa;Xb;Xd, A and Cg values.

After that, it increase the number of iteration and

check if the number of iteration, does not reach to
Max iter it go to Step 6. If Max iter satisfies, it move
to next fold and return to Step 4. If Max iter and fold
number k satisfy, it calculate the average RMSE and aver-

age accuracy of k-folds. Finally, return mean RMSE and
mean classification accuracy. The algorithm in detail is
explained in (Algorithm 1).



Table 1 Mathematical preliminaries for scaling techniques.

Symbol Description
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Algorithm1: The sequential hybrid GWO_SVM for Breast Cancer

Input: SearchAgents no Number of search agents

Max iter Number of Iterations

lb Lower Bound

ub Upper Bound

dim No. of features

Output : Average RMSE of SVM

Average classification accuracy rates of SVM

over k testing set

1. Initialization:
� Agents size (n) and the GW population X iði ¼ 1; 2; :::; nÞ:
� Parameter a, coefficient vector (A and Cg).

� Max iter,lb and ub.
� The best search agent (X a)

� The second best search agent (X b)

� The third best search agent (X d)

� K-folds2. Generate the initial population randomly.

3. Load the data and apply one of scaling techniques on it.

4. For j = 1: k

Divide data randomly to train and test sets

5. while (t < Max iter)
6. for each search agent do

Pass it to specific functions and set its output to

parameter of SVM (C, c)
Train and test SVM model

7. Evaluate the search agent fitness by Eq. (17)

8. Update X a; X b; X d .based on fitness value

end for

9. Update a

for each search agent do

for each dimension do

Update A and C.

Update the position of the current search agent

end for

end for

10. t = t + 1

end while

t = 0

end for11. Calculate the average RMSE and accuracy of k-

folds in each iteration.

12. Return RMSE and classification accuracy.
AðaijÞ
aij

m� nmatrix (with m (observations) and n (attributes))

The matrix element in rowiandcolumnj
ri The scaling agent of rowi

sj The scaling agent of rowj

R Diagonal matrix such thatR ¼ diagðr1; � � � ; rmÞ
S Diagonal matrix such thatS ¼ diagðs; � � � ; snÞ
Ni Ni ¼ fjjAij–0g; suchthat1 � i � m

Mj Mj ¼ fijAij–0g; suchthat1 � j � n

ni The number of elements for the set Ni

mj

aRij

aRSij

The number of elements for the set Mj

The matrix element in rowiand columnj after row scaling

The matrix element in rowiand columnj after row and

column scaling

ARðaRij Þ The scaled matrix by row R scaling agent

ARSðaRSij Þ The final scaled matrix.
3.2. The parallel hybrid GWO_SVM model

Parallel algorithm can achieve high speed up and low execu-
tion time. Parallelism can be done by dividing the population

into several groups, with multithreading.
Let that at the algorithm’s start, the number of cores Ncis

identified. An initial population contains n individuals is ran-

domly initialized. The size of the group will be computed as
follows:

ng ¼ n

Nc

� �
ð18Þ

The steps of the parallel hybrid GWO-SVM is shown in
(Algorithm 2).
Algorithm 2: Parallel GWO-SVM

1: Begin,

2: Identifying Nc(no. of cores),

3: Randomly initializing the population,

4: compute ng individuals with Eq. (18),

5: Make Ncgroups

6: Divide the individuals on cores

7: Apply GWO-SVM Model on Each core

8: Select the optimal individuals from all threads,

9: Update the model’s parameters and Position of individuals

10: Return Average classification accuracy for all folds

11: End.
4. Scaling techniques

Here, we introduce the mathematical notations of ten scaling
techniques in addition to the normalization scaling techniques
with ranges [0, 1] and [�1, 1]. First of all, we introduce the fol-
lowing mathematical preliminaries as shown in Table 1.

The scaled matrix is expressed as RAS, such that
R = diagðr1; � � � ; rmÞ andS ¼ diagðs1; � � � ; snÞ. All scaling tech-
niques proposed in this section apply first rows scaling and

after that columns scaling. Then, the matrix after full scaling
(row and column) is given by:

AR ¼ RA;ARS ¼ ARS ð19Þ

(1) Arithmetic Mean Scaling Technique

Arithmetic mean aims to decrease the variance between the
nonzero elements in the coefficient matrixA. Eq. (20) repre-
sents the rows scaling such that each row (instance) is divided



Table 2 Description of the computing environment.

CPU Intel (R) Core (TM) i5- 7200U CPU@

2.70 GHz

RAM Size 4 GB RAM

MATLAB

version

R2015a (8.5.0.197613)

Table 3 WDBC Dataset Description.

Attribute name ID

Patient ID A1

Outcome B1

RADIUS1 C1

TEXTURE1 D1

PERIMETER1 E1

AREA1 F1

SMOOTHNESS1 G1

COMPACTNESS1 H1

CONCAVITY1 I1

CONCAVEPOINTS1 J1

SYMMETRY1 K1

FRACTALDIMENSION1 L1

RADIUS2 M1

TEXTURE2 N1

PREIMETER2 O1

AREA2 P1

SMOOTHNESS2 Q1

COMPACTNESS2 R1

CONCAVITY2 S1

CONCAVEPOINTS2 T1

SYMMETRY2 U1

FRACTALDIMENSION2 V1

RADIUS3 W1

TEXTURE3 X1

PREIMETER3 Y1

AREA3 Z1

SMOOTHNESS3 AA1
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by the mean of the absolute value of the non-zero values
(instance):

ri ¼ niP
j2Ni

aij
ð20Þ

Eq. (21) represents the columns scaling such that each col-
umn (attribute) is divided by the arithmetic mean of the abso-

lute value of the nonzero elements in that column (attribute).

sj ¼ miP
i2Mj

aijR
ð21Þ

(2) Equilibration Scaling Technique

The biggest value in absolute value is the corner stone for

this scaling method. Each row of the matrix A is divided by
the biggest value in absolute value in that row. Then, each col-
umn of the scaled matrix A by the row factor divided by the

biggest value in absolute value in that column. The range of
the final scaled matrix A is [�1, 1].

(3) Geometric Mean Scaling Technique

First, Eq. (22) represents the rows scaling such that each

row (instance) is divided by the geometric mean of the absolute
value of the non-zero elements in that row (instance).

ri ¼ max
j2Ni

aij min
j2Ni

aij

� ��1=2

ð22Þ

Second, Eq. (23) represents the columns scaling such that
each column (attribute) is divided by the geometric mean of

the absolute value of the non-zero elements in that column
(attribute).

sj ¼ max
j2Mj

aRij min
j2Mj

aRij

� ��1=2

ð23Þ

(4) Normalization scaling technique

It is also known as min-max scaling or min-max normaliza-

tion, is the simplest method and consists in rescaling the range
of features to scale the specific range. Selecting the target range
depends on the nature of the data. The general formula for a

min-max of [0, 1] is given in Eq. (24).

xnew¼
x� xmin

xmax � xmin

ð24Þ

where x is an original value, xnew is the normalized value, xmin

and xmax are the minimum and maximum values of the dataset
respectively. To rescale a range between an arbitrary set of val-
ues [a, b], the formula becomes as in Eq. (25).

xnew ¼ aþ ðx� xminÞðb� aÞ
xmax � xmin

ð25Þ

COMPACTNESS3 AB1

CONCAVITY3 AC1

CONCAVEPOINTS3 AD1

SYMMETRY3 AE1

FRACTALDIMENSION3 AF1
5. Experimental design

In this section, we introduce data description, measure for per-

formance evaluation and the comparative study.
5.1. Experimental setup

The proposed GWO-SVM detection model was developed by
MATLAB. SVM, implementation was enhanced, which is
originally developed by Chang and Lin [61]. Table 2 describes

the experiments computing environment.
Salzberg [62] introduced the k-fold CV which is used to

guarantee the valid results. In this paper, k ¼ 10. The detail
parameters for GWO-SVM are set as follows. The number

of iterations, search agents, dimensions and k-fold are set to
1000 and 19, 25 and 10 respectively but the steady state occurs
at about 317, 155, 551 and 146 iterations for normalization,

arithmetic mean, Geometric mean, and Equilibration scaling
techniques respectively. The lower bound and upper bound
½lb; ub� is set as ½�5; 5�. Finally, the parameter a is calculated

by:



Fig. 3 SVM using grid search.
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a ¼ 2� t� 2

Maxiter

� �
ð26Þ

where t is current iteration

5.2. Data description

In this work, we have run the proposed model on the Wiscon-
sin diagnosis Breast Cancer (WDBC) dataset that available the
UCI Machine Learning Repository [48]. The dataset consists

of 569 instances divided into two classes.
The two classes malignant and benign have 357 and 212

cases respectively. Each record in the database has thirty-two

attributes. The thirty two attributes listed in Table 3.

5.3. Measure for performance evaluation

In order to test the performance of the proposed GWO-SVM
model, we use sensitivity, specificity, accuracy, precision, G-
mean and F-score. According to the confusion matrix, sensitiv-

ity, specificity, accuracy, precision, G-mean and F-score are
defined as follows:

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
� 100 ð27Þ
Table 4 Accuracy for WDBC database using SVM with grid searc

Fold Without scaling (S0)

C c Acc.%

1 23 2-13 94.76

2 27 2-15 91.59

3 215 2-13 100

4 25 2-13 97.18

5 21 2-11 96.23

6 2-1 2-9 91.29

7 211 2-15 97.59

8 29 2-15 98.6

9 29 2-15 97.59

10 215 2-9 96.23

Avg. 6878 0.005 96.1

Time 52.62167
Sensitivity ¼ TP

TPþ FN
� 100 ð28Þ

Specificity ¼ TN

TNþ FP
� 100 ð29Þ

Precision ¼ TP

TPþ FP
� 100 ð30Þ

Gmean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sensitivity� Specificity

p
ð31Þ

Fmeasure ¼ 2� Precision� Sensitivity

Precisionþ Sensitivity
ð32Þ
5.4. Comparative study

In this study, we compare the performance of the proposed
GWO-SVM system and SVM using grid search technique.

The best C and c are computed by grid search. Fig. 3 shows
steps for training SVM using grid search. The searching space
of parameters C and c are set to C = {2-5, 2-3. . . 215} and c =

{2�15, 2�13, � � �, 21}, respectively.

6. Experimental results and discussions

In order to evaluate the efficiency of the proposed GWO-SVM
model for breast cancer, we do experiments on the WDBC
dataset. First of all, our results show the effectiveness of grid

search techniques, the efficiency of the sequential proposed
GWO-SVM model and the superiority of the newest scaling
techniques which competitive the traditional normalization
technique. Finally, the experimental results show that the par-

allel version of the proposed model achieves a speedup by 3.9
for four cores.

Table 4, Table 5 and Table 6 show a comparison among

classification accuracies of SVM with normalization scaling
[0, 1], without scaling, normalization scaling [�1, 1] arithmetic
mean scaling, geometric mean scaling and equilibration scal-

ing. It is apparent from Table 4 and Table 5 that the average
accuracy rates achieved by SVM with geometric mean scaling
technique (98.59%) is better than that obtained by SVM with
normalization scaling techniques (96.49%) and (96.66%). On

the other hand, the equilibration scaling technique overcomes
h technique (Without scaling and Normalization scaling [0, 1]).

Normalization scaling [0,1] (S1)

C c Acc.%

213 2-7 100

215 2-9 98.25

215 21 92.98

215 2-1 94.74

215 2-1 94.74

215 21 96.49

215 2-3 98.25

215 2-13 96.49

215 21 94.74

215 21 98.25

30310.4 0.91 96.49

14.448410



Table 5 Accuracy for WDBC database using SVM with grid search technique (Normalization scaling [�1, 1] and Arithmetic mean

scaling).

Fold Normalization scaling [-1,1] (S2) Arithmetic mean scaling (S3)

C c Acc.% C c Acc.%

1 211 21 94.64 23 2-7 100.00

2 215 21 92.98 215 2-9 98.25

3 213 21 100 29 2-5 96.49

4 213 21 98.25 2-1 2-5 96.49

5 215 21 96.49 29 2-9 100.00

6 215 2-1 96.49 25 2-5 98.25

7 213 21 100 27 2-7 98.25

8 215 21 96.49 2-1 2-3 98.25

9 213 21 94.74 29 2-9 100.00

10 213 2-1 96.49 215 2-9 98.25

Avg. 17,408 1.7 96.66 6724 0.024 98.42

Time 19.208797 12.516496

Table 6 Accuracy for WDBC database using SVM with grid search technique (Geometric mean scaling and Equilibration scaling).

Fold Geometric mean scaling (S4) Equilibration scaling (S5)

C c Acc.% C c Acc.%

1 21 2-5 100 25 2-1 100.00

2 29 2-5 98.25 23 21 98.25

3 29 2-5 96.49 25 2-1 100.00

4 2-1 2-5 96.49 215 21 98.25

5 29 2-9 100 21 2-1 100.00

6 27 2-5 98.25 29 2-1 98.25

7 23 2-3 100.00 215 21 100.00

8 215 2-3 98.25 215 21 100.00

9 29 2-9 100 23 21 94.74

10 25 2-3 98.25 23 21 100.00

Avg. 34,987 0.5352 98.59 9891 1.4 98.95

Time 15.143076 10.175330

Table 7 Accuracy for WDBC database using SVM for all scaling techniques.

NO Symbol Scaling techniques Accuracy CPU time

1 (S5) Equilibration 98.95 10.175330

2 (S4) Geometric mean 98.60 15.143076

3 (S3) Arithmetic mean 98.42 12.516496

4 (S2) Normalization [�1, 1] 96.66 19.208797

5 (S1) Normalization [0, 1] 96.49 14.558410

6 (S0) Without scaling 96.10 52.62167
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all other scaling techniques by (98.95%) accuracy that
obtained by SVM.

Table 7 and Fig. 4 summarize the results of all scaling tech-
niques that obtained by SVM according the accuracies and
CPU times. It is apparent from Table 6 and Fig. 4 that the

equilibration scaling technique overcomes all other scaling
techniques according to the accuracy and CPU time. On the
other hand, the geometric mean scaling technique outperforms

the arithmetic mean scaling technique according to the accu-
racy but it is not like this about CPU time.
Tables 8, Table 9, Table 10, Table 11 and Table 12 show the
superiority of the novel scaling techniques according to both

accuracy rates and CPU time. It is clear that the average accu-
racy rates achieved by GWO-SVM with geometric mean scal-
ing technique (99.12%) is better than that obtained by GWO-

SVM with normalization scaling techniques (98.42%) and
(98.60%). On the other hand, the equilibration scaling tech-
nique overcomes all other scaling techniques by (99.30%)

accuracy that obtained by SVM. Finally, Table 13 summarizes
all these results.



Fig. 4 Accuracy comparison among all proposed scaling tech-

niques against the normalization [0, 1], normalization [�1, 1] and

without scaling technique for SVM with grid search model.

Table 9 Accuracy, sensitivity, specificity, precision, recall, F-

score, G-mean and RMSE for WDBC database using tthe

normalization scaling technique [�1, 1].

Fold GWO-SVM with Normalization Scaling between [�1, 1]

(S2)

Accuracy % Sensitivity % Specificity % Precision %

%

1 100 100 100 100

2 94.74 95.45 100 100

3 100 100 97.14 95.65

4 100 100 97.22 95.45

5 100 95.24 100 100

6 98.25 95.24 100 100

7 100 100 100 100

8 98.25 100 97.22 95.45

9 96.49 100 97.22 95.45

10 98.25 95.24 100 100

Avg. 98.60 98.12 98.88 98.20

Time 4.37E + 04

Fold GWO-SVM with Normalization Scaling between [-1, 1] (S2)

Recall % F-score % G-mean % RMSE

1 100 100 100 0

2 95.45 97.67 97.70 0.1325

3 100 97.78 98.56 0.1325

4 100 97.67 98.60 0.1325
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Table 13 and Fig. 5, and Fig. 6 summarize the results of all

scaling techniques that obtained by GWO-SVM according the
accuracies and CPU times. It is apparent from Table 13 and
Fig. 5 that the equilibration scaling technique overcomes all

other scaling techniques according to the accuracy and CPU
time. On the other hand, the arithmetic mean scaling technique
outperforms the geometric mean scaling technique according
to the accuracy and CPU time.

From Table 7-13 show the superiority of the proposed
model GWO-SVM on the traditional SVM according to the
accuracy rate. The accuracy rates of the proposed model
Table 8 Accuracy, sensitivity, specificity, precision, recall, F-

score, G-mean and RMSE for WDBC database using the

normalization scaling technique [0, 1].

Fold GWO-SVM with Normalization Scaling between [0, 1] (S1)

Accuracy % Sensitivity % Specificity % Precision %

1 100 100 100 100

2 100 100 100 100

3 96.49 90.91 100 100

4 100 100 100 100

5 96.49 90.48 100 100

6 98.25 95.24 100 100

7 98.25 100 97.22 95.45

8 98.25 100 97.22 95.45

9 98.25 100 97.22 95.45

10 98.25 95.24 100 100

Avg. 98.42 97.19 99.17 98.64

Time 2.28E + 04

Fold GWO-SVM with Normalization Scaling between [0, 1] (S1)

Recall % F-score % G-mean % RMSE

1 100 100 100 0

2 100 100 100 0

3 90.91 95.24 95.35 0.1873

4 100 100 100 0

5 90.48 95 95.12 0.1873

6 95.24 97.56 97.59 0.1325

7 100 97.67 98.60 0.1325

8 100 97.67 98.60 0.1325

9 100 97.67 98.60 0.1325

10 95.24 97.56 97.59 0.1325

Avg. 97.19 97.84 98.14 0.1037

Time 2.28E + 04

5 95.24 97.56 97.59 0.1325

6 95.24 97.56 97.59 0.1325

7 100 100 100 0

8 100 97.67 98.60 0.1325

9 100 97.67 98.60 0.1325

10 95.24 97.56 97.59 0.1325

Avg. 98.12 98.12 98.48 0.1060

Time 4.37E + 04
GWO-SVM are 99.30, 99.12, 98.60, 98.60 and 98.42 for the
scaling techniques Equilibration scaling, Geometric mean scal-

ing, Arithmetic mean scaling, Normalization [�1, 1] and Nor-
malization [0, 1] respectively. On the other hand, the accuracy
rates of the traditional SVM are 98.95, 98.60, 98.42, 96.66 and

96.49 for the scaling techniques Equilibration scaling, Geomet-
ric mean scaling, Arithmetic mean scaling, Normalization [�1,
1] and Normalization [0, 1] respectively.

In order to minimize CPU time of the proposed model
GWO-SVM, we proposed the parallel version of the proposed
model GWO-SVM that showed in Section 4. Table 14 and
Fig. 7 show CPU times for all scaling techniques that obtained

by GWO-SVM. On the other hand, Table15 and Fig. 8 show
the speedup for all scaling techniques that obtained by
GWO-SVM. The speedups for four cores are 3.50, 3.70,

3.61, 3.91 and 3.80 for the scaling techniques Equilibration
scaling, Geometric mean scaling, Arithmetic mean scaling,
Normalization [�1, 1] and Normalization [0, 1] respectively.

Table 16 shows the comparison between GWO-SVM and
other approaches developed in the literature which shows the
effectiveness of our approach. From the Table 16, it is clear
that the proposed model outperforms other SVM classifiers

on WDBC database. On the other hand, the proposed model
doesn’t outperform Kamel et al. [27] due to the last one used



Table 10 Accuracy, sensitivity, specificity, precision, recall, F-

score, G-mean and RMSE for WDBC database using Arith-

metic Mean Scaling technique

Fold GWO-SVM with Arithmetic Mean Scaling technique (S3)

Accuracy % Sensitivity % Specificity % Precision %

1 96.43 90.48 100 100

2 100 100 100 100

3 96.49 95.45 97.14 95.45

4 94.74 85.71 100 100

5 100 100 100 100

6 100 100 100 100

7 100 100 100 100

8 98.25 95.24 100 100

9 100 100 100 100

10 100 100 100 100

Avg. 98.60 96.69 99.71 99.55

Time 7.75E + 03

Fold GWO-SVM with Arithmetic Mean Scaling technique (S3)

Recall % F-score % G-mean % RMSE

1 90.48 95 95.12 0.1890

2 100 100 100 0

3 95.45 95.45 96.30 0.1873

4 85.71 92.31 92.58 0.2294

5 100 100 100 0

6 100 100 100 0

7 100 100 100 0

8 95.24 97.56 97.59 0.1325

9 100 100 100 0

10 100 100 100 0

Avg. 96.69 98.03 98.16 0.0738

Time 7.75E + 03

Table 11 (continued)

Fold GWO-SVM with Geometric Mean Scaling Technique (S4)

Accuracy % Sensitivity % Specificity % Precision %

Fold GWO-SVM with Geometric Mean Scaling Technique (S4)

Recall % F-score % G-mean % RMSE

1 100 98.56 98.56 0.1336

2 90.91 93.97 93.97 0.2294

3 86.36 92.93 92.93 0.2294

4 100 100 100 0

5 100 100 100 0

6 100 100 100 0

7 100 98.60 98.60 0.1325

8 100 100 100 0

9 100 100 100 0

10 90.48 95.12 95.12 0.1873

Avg. 96.77 97.61 97.92 0.0912

Time 7.14E + 03

Table 12 Accuracy, sensitivity, specificity, precision, recall, F-

score, G-mean and RMSE for WDBC database using Equili-

bration Scaling technique.

Fold GWO-SVM with Equilibration Scaling technique (S5)

Accuracy % Sensitivity % Specificity % Precision %

1 98.21 100 97.14 95.45

2 100 100 100 100

3 100 100 100 100

4 100 100 100 100

5 96.49 90.48 100 100

6 100 100 100 100

7 100 100 100 100
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holdout validation but our model use k-fold validation which
is more accurate technique.

Finally the strength of GWO-SVM algorithm that it results
high classification accuracy especially when we used new scal-
Table 11 Accuracy, sensitivity, specificity, precision, recall, F-

score, G-mean and RMSE for WDBC database using Geo-

metric Mean Scaling Technique.

Fold GWO-SVM with Geometric Mean Scaling Technique (S4)

Accuracy % Sensitivity % Specificity % Precision %

1 98.21 100 97.14 95.45

2 94.74 90.91 97.14 95.24

3 94.74 86.36 100 100

4 100 100 100 100

5 100 100 100 100

6 100 100 100 100

7 98.25 100 97.22 95.45

8 100 100 100 100

9 100 100 100 100

10 96.49 90.48 100 100

Avg. 98.24 96.77 99.15 98.61

Time 7.14E + 03
ing techniques and the shortcomings of it that it takes long
running time but we were able to solve the problem relatively

by the parallel version of GWO-SVM.
8 98.25 95.24 100 100

9 100 100 100 100

10 100 100 100 100

Avg. 99.30 98.57 99.71 99.55

Time 3.13E + 03

Fold GWO-SVM with Equilibration Scaling technique (S5)

Recall % F-score % G-mean % RMSE

1 100 97.67 98.56 0.1336

2 100 100 100 0

3 100 100 100 0

4 100 100 100 0

5 90.48 95 95.12 0.1873

6 100 100 100 0

7 100 100 100 0

8 95.24 97.56 97.59 0.1325

9 100 100 100 0

10 100 100 100 0

Avg. 98.57 99.02 99.13 0.0453

Time 3.13E + 03



Table 13 Accuracy for WDBC database using GWOSVM for all scaling techniques.

NO Symbol Scaling techniques Accuracy CPU time

1 (S5) Equilibration 99.30 3130

2 (S4) Geometric mean 98.24 7140

3 (S3) Arithmetic mean 98.60 7750

4 (S2) Normalization [�1, 1] 98.60 43,700

5 (S1) Normalization [0, 1] 98.42 22,800

Fig. 5 Accuracy comparison among all proposed scaling tech-

niques against the normalization [0, 1], normalization [�1, 1] for

GWOSVM model.

Fig. 6 CPU time comparison among all proposed scaling

techniques against the normalization [0, 1], normalization [�1, 1]

for GWOSVM model.

Table 14 CPU Time for WDBC database using parallel

GWO-SVM for all scaling techniques

Scaling Techniques GWO-SVM

Core1 Core2 Core4

Equilibration (S5) 3130 2019.35 894.29

Arithmetic mean (S4) 7550 4660.49 2091.41

Geometric mean (S3) 7140 4127.17 1929.73

Normalization [�1, 1] (S2) 43,700 22410.26 11176.47

Normalization [0, 1] (S1) 22,800 12459.02 6000

Fig. 7 CPU Time for WDBC database using GWOSVM for all

scaling techniques.

Table 15 Speed up for WDBC database using parallel GWO-

SVM for all scaling techniques

Scaling Techniques GWO-SVM

Core1 Core2 Core4

Equilibration (S5) 1 1.55 3.5

Arithmetic mean (S4) 1 1.62 3.61

Geometric mean (S3) 1 1.73 3.70

Normalization [�1, 1] (S2) 1 1.95 3.91

Normalization [0, 1] (S1) 1 1.83 3.80

Fig. 8 Speedup for WDBC database using GWOSVM for all

scaling techniques.
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Table 16 Classification accuracies obtained with our method and other classifiers from literature for WDBC dataset

Study Method Accuracy (%)

Aalaei et al. (2016) [21] GA-ANN 97.3 train: 80%-test:20%

S. Mandal (2017) [63] Logistic Regression 97.9 train: 70%-test:30%

Agarap (2018) [22] GRU-SVM 93.8 train: 70 %test:30%

Bharat et al. (2018) [64] SVM 99.1 train: 80%-test:20%

Darwish et al. (2018) [26] WOA-SVM 98.8 10xCV

Dhahri et al. (2019) [23] GA-AB 98.23 10xCV

Kamel et al. (2019) [27] GWO-SVM 100 train: 80%-test:20%

95.7 train: 70%-test:30%

Rahmani et al. (2020) [29] GOV-SVM 98.8 train: 70%-test:30%

Kumar et al. (2021) [28] EGWO-SVM 98.24% 10xCV

Our study GWO-SVM 99.3 10xCV

Table 17 Accuracy for EHR database using SVM for all

scaling techniques.

Symbol Scaling techniques Accuracy CPU time

(S5) Equilibration 83.79 2.4498

(S4) Geometric mean 80.15 2.9579

(S3) Arithmetic mean 82.80 3.2539

(S2) Normalization [�1, 1] 83.56 2.2924

(S1) Normalization [0, 1] 82.47 1.9245

(S0) Without scaling 75.99 2.2963

Table 18 Accuracy for EHR database using GWO-SVM for

all scaling techniques.

NO Symbol Scaling techniques Accuracy CPU time

1 (S5) Equilibration 92.20 2925

2 (S4) Geometric mean 86.79 6950

3 (S3) Arithmetic mean 86.29 7530

4 (S2) Normalization [�1, 1] 92.35 41,521

5 (S1) Normalization [0, 1] 93.26 21,200
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7. Another dataset to validate GWO-SVM

In order to evaluate the proposed model we will use another

data set Electronic Health Records EHR. The EHR was col-
lected in routine blood analysis for 64 women with Breast can-
cer BC and 52 healthy volunteers after an overnight fasting.
The EHR data for each participant comprises 9 parameters,

namely, age, body mass index, glucose, insulin, HOMA, Lep-
tin, Adiponectin, resisting and MCP-1. The utilized dataset
EHR includes 116 samples [65].

Table 17 and Table 18 shows that the proposed model
GWO-SVM overcomes the classic SVM by 93.26 against
82.47 for normalization [0, 1] scaling technique. On the other

hand, for all other scaling technique the proposed model out-
performs the traditional SVM. Finally, when we compare the
proposed model with other reference [65], we note that the pro-

posed model outperforms the reference [65] by 93.26 against
86.0 accuracy rate.
8. Conclusion and future work

This work has three contributions. The first contribution is

improving the performance of support vector machine
(SVM) using a recent grey wolf optimizer (GWO) for diagnosis
breast cancer. The second contribution is proposing three effi-

cient scaling techniques against the classical normalization
technique. The last contribution is using a parallel technique
which applies task distribution to improve the efficiency of
GWO. The proposed sequential model is applied on two differ-

ent datasets, Wisconsin diagnosis breast cancer (WDBC) data-
set and Electronic Health Records (EHR). Experimental
results of WDBC show that the proposed hybrid GWO-

SVMmodel achieves 98.60% with normalization scaling. Also,
using the proposed scaling techniques with the proposed
GWO-SVM model gives a fast convergence and achieves accu-

racy rate by 99.30%. The parallel version of the proposed
model achieves a speedup by 3.9 on four CPU cores. On the
other hand, Experimental results of EHR show that the pro-
posed hybrid GWO-SVM model achieves 93.26% with nor-

malization scaling against 82.05 for SVM. The future work
will give a lot of attention to evaluate the proposed model with
other medical datasets. In addition to introducing more scaling

techniques which will reduce the CPU time and they improve
the performance of the accuracy of diagnostic system.
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